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Abstract. A procedure is presented for finding simple approximations of the discrete
eigenvalues of the Zakharov–Shabat scattering problem corresponding to the nonlinear
Schr̈odinger equation. The approximation is in the form of an interpolation formula which
combines results for small eigenvalues, obtained by a direct variational approach, and for large
eigenvalues, obtained by the Bohr–Sommerfeld quantization rule.

The Zakharov–Shabat scattering problem plays a central role in the solution procedure
of several important evolution equations describing the nonlinear propagation of wave
pulses, e.g. the nonlinear Schrödinger equation, the sine–Gordon equation and the modified
Korteweg–de Vries equation [1]. These equations are universal in the sense that they
describe basic physical problems which appear in many different areas of physics. The
analytical tool used to solve these nonlinear evolution equations is the inverse scattering
transform method; the solution of the concomitant scattering problem [2] provides the
discrete eigenvalues which yield information about the soliton properties of the solution.
Although the problem of finding the discrete eigenvalues is linear, the solution is not
available in closed form except for special cases. Consequently, there is great interest for
both numerical [3, 4] and approximate analytical schemes for determining the eigenvalues
of the Zakharov–Shabat scattering problem. Several approximate studies of the Zakharov–
Shabat scattering problem have used theWKB method (cf [5, 6]). However, recently a new
approach based on direct variational schemes has been suggested independently by two
groups [7–9]. In this paper, we present a procedure for finding simple approximations
of discrete eigenvalues of the Zakharov–Shabat scattering problem for the nonlinear
Schr̈odinger equation. The procedure is based on a direct variational approach and the
Bohr–Sommerfeld quantization rule.

The Zakharov–Shabat scattering problem reads

dv1

dx
= −iζv1 + q(x)v2 and

dv2

dx
= −q∗(x)v1 + iζv2

v1 → exp(−iζx) v2 → 0 x → −∞
(1)
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where v1 and v2 are the Jost functions,ζ is the eigenvalue andq(x) is the potential
corresponding to the initial pulse form. The Zakharov–Shabat equations can be reduced
to a single second-order equation forv1, by eliminatingv2. This yields

v1xx − qx

q
v1x +

(
ζ 2 + |q|2 − iζ

qx

q

)
v1 = 0 (2)

where the subscriptx denotes differentiation with respect tox. In the subsequent analysis we
will assume the potentialq(x) to be a real-valued single-humped function with a maximum
A for x = 0, i.e. q(0) ≡ A. For smooth potentials and large values ofA, the terms
proportional toqx/q in equation (2) can be neglected, as shown in [10]. This yields an
ordinary Schr̈odinger equation for which we can use the Bohr–Sommerfeld quantization
rule to determine the eigenvaluesζ = iη:∫ x2

x1

√
q2(x) − η2 dx = π(n − 1

2) n = 1, 2, . . . . (3)

The limits of integration in equation (3), i.e. the turning points, are given by the two roots
of the equationq(x) = η. The casen = 1 corresponds to the largest eigenvalue whereas
larger integers correspond to higher-order modes. This so-called quasiclassical approach was
suggested already in the original classical paper by Zakharov and Shabat [11]. Although
(3) is primarily an approximation valid for largeA, it is interesting to note that it is also
exact forη = 0, since in this limit it reduces to the well known threshold condition for
soliton generation [2, 12], namely∫ ∞

−∞
|q(x)| dx = π

(
n − 1

2

)
. (4)

This implies that (3) can be expected to give a good approximation for all eigenvalues as
long as the potential is smooth enough, a fact which does not seem to have been emphasized
before. We illustrate this property of the Bohr–Sommerfeld quantization condition by
considering the case of a Gaussian potentialq = A exp(−x2) which has been extensively
studied in connection with pulse propagation in optical fibres. The result for the eigenvalue
η as a function ofA, obtained by a numerical integration of the integral in (3), is shown in
figure 1 and compared with a result of a numerical solution of the original Zakharov–Shabat
scattering problem (equation (1)). The agreement is seen to be very good.

Figure 1. The imaginary part,η, of the discrete eigen-
value as a function of the amplitudeA for the potential
q = A exp(−x2). The full curve represents a numeri-
cal solution of the Bohr–Sommerfeld quantization rule,
equation (3), whereas the circles represent a full numer-
ical solution of the Zakharov–Shabat eigenvalue prob-
lem, equation (1).
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However, for less smooth potentials, predictions based on equation (3) can be expected
to be less accurate. This is clearly seen in the extensive investigation by Kaup [6], where
equation (3) has been used to obtain approximations for the eigenvalues in the case of a
rectangular potential where the quantization integral in (3) can be performed analytically to
give explicit expressions for the eigenvalue as a function of the height of the potential. The
qualitative agreement between the predictions of (3) and a full numerical solution of the
Zakharov–Shabat problem is found to be good, but the quantitative agreement is less so,
in particular for small eigenvalues. Even for large eigenvalues there is a systematic shift
between the analytical and numerical curves forη = η(A), which is due to the fact that
the terms containingqx/q cannot be neglected in (2) for the rectangular box potential since
this particular potential has an infinite slope at the edge of the pulse.

The problem of the rectangular potential was reconsidered in [9] using a new approach
based on a direct variational method involving trial functions and a subsequent Ritz
optimization. This variational analysis resulted in a simple analytical expression for the
eigenvalue, in excellent agreement with the numerical solution.

A disadvantage of the Bohr–Sommerfeld quantization formula, equation (3), is the fact
that the corresponding solution for the eigenvalue, in general, is complicated and has to
be obtained by numerical integration. To remedy this situation we suggest a new approach
which combines the merits of the Bohr–Sommerfeld formula and the variational approach.

Let us consider a single-humped and, for simplicity, symmetric potential involving a
single scale parameterA, i.e.q(x) = AQ(x). The Bohr–Sommerfeld formula, equation (3),
then yields

2A

∫ x2

0

√
Q2(x) − Q2(x2) dx = π

(
n − 1

2

)
(5)

where we have usedη = q(x2) = AQ(x2). The right-hand side of (5) is finite; we must
therefore require thatx2 → 0 asA → ∞. The limits of integration are hence small for large
amplitudes and it is legitimate to use an expansion forQ(x) valid for smallx. In this paper
we will focus on potentials with a parabolic shape in the central parts. Many interesting pulse
shapes are of this type. However, it should be emphasized that the analysis can be carried
out for other pulses with small modifications. Inserting the expansionQ(x) ≈ (1− bx2) in
equation (5) yields

4
Abx2

2√
2b

∫ 1

0

√
(1 − t2)

(
1 − bx2

2

2
(1 + t2)

)
dt = π

(
n − 1

2

)
. (6)

The integral approachesπ/4 asx2 → 0, and the eigenvalue is given byη = A(1−bx2
2). We

therefore asymptotically obtain a straight-line solution,η = A−1 where1 = (n− 1
2)

√
2b.

This straight line can be expected to give a good approximation of the asymptotic behaviour
of η = η(A) for large eigenvalues. In the complementary limit of small eigenvalues an
accurate straight-line approximation ofη = η(A) was found in [9] using a direct variational
approach. The result is

η = k(A − Ac) (7)

where the critical amplitude,Ac, corresponding toη = 0, and the initial slope,k, of the
curveη = η(A) are given, respectively, by

Ac =
1
2π(2n − 1)

〈Q〉 (8)
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Table 1. Critical amplitudeAc, initial slopek, and asymptotic offset1, according to equations (8), (9) and (6),
respectively, for the potentialsq = A exp(−x2) andq = A sech3(x).

q(x) = A exp(−x2) q(x) = A sech3(x)

Eigenmode Critical Initial slope Asymptotic Critical Initial slope Asymptotic
n amplitudeAc k offset 1 amplitudeAc k offset 1

1
√

π/2 1.190 1/
√

2 1 1.114
√

3/2
2 3

√
π/2 1.563 3/

√
2 3 1.294 3

√
3/2

3 5
√

π/2 1.728 5/
√

2 5 1.352 5
√

3/2

and

k = 〈Q〉〈
sin

[
2Ac

∫ x

−∞ Q(x ′) dx ′]〉 (9)

whereQ is the normalized amplitude, i.e.q(x) = AQ(x), and 〈· · ·〉 denotes integration
with respect tox from minus infinity to plus infinity.

For the case of the classical scattering potentialq = A sech(x), the straight-line
approximations given by (6) and (7) coincide and in fact are equal to the exact result,
i.e. η = A − (n − 1

2) (cf the appendix). However, this coincidence of the asymptotic lines
for small and large amplitudes, respectively, is peculiar to the sech-shaped potential. For
other potentials,q(x), equations (6) and (7) in general yield two different straight lines.
It is then natural to use an interpolation formula which smoothly connects the two lines.
One possible choice is to takeη = η(A) as the ratio of a second-order and a first-order
polynomial in A and to determine the four independent parameters of the polynomials so
as to obtain the correct asymptotic behaviour asA → Ac andA → ∞, respectively. This
yields

η = (A − Ac)[A − Ac + k(1 − A)]

(A − Ac)(1 − k) + 1 − Ac
(10)

which represents a smooth transition between the two straight lines provided(1−Ac)/(1−
k) > 0.

In order to illustrate the usefulness of equation (10) we consider two further examples:
(i) the previously mentioned Gaussian pulseq = A exp(−x2), and (ii) q = A sech3(x),
which has attracted attention lately in connection with nonlinear optical fibre loop
mirrors [13]. Table 1 summarizes the results for the critical amplitudeAc, the initial slope
k, and the asymptotic offset1 for these pulses for the first three eigenmodes.

Figures 2 and 3 compare the predictions of the interpolation formula for the eigenvalues
with numerical solutions of the Zakharov–Shabat scattering equations, for the potentials
q = A exp(−x2) andq = A sech3(x), respectively. The agreement is seen to be very good.

In conclusion, we have derived a simple and useful analytical expression for the discrete
eigenvalues of the Zakharov–Shabat scattering problem for real single-humped potentials,
q(x), which have a parabolic shape forx � 1. Application to the casesq(x) = A sech(x),
q(x) = A sech3(x) and q(x) = A exp(−x2) has been shown to yield results which are in
excellent agreement with numerical solutions of the Zakharov–Shabat scattering equations.
We think that the variational approach should also be a useful tool for finding the discrete
eigenvalues of the Zakharov–Shabat problem for other types of potentials. Furthermore,
it should be possible to extend the approach to the corresponding scattering problems for
other nonlinear evolution equations solvable by the inverse scattering technique.
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Figure 2. The imaginary part,η, of the discrete
eigenvalue as a function of the amplitudeA for the
potential q = A exp(−x2). The full curve is the
approximation according to equation (9) whereas the
circles represent a numerical solution of the Zakharov–
Shabat eigenvalue problem (equation (1)).

Figure 3. Same as figure 2 but for the potential
q = A sech3(x).
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Appendix. The potential q = A sech(x)

The classical scattering potential,q = A sech(x) has the remarkable feature that the solution
to the corresponding Zakharov–Shabat scattering problem is very simple, i.e. the real part
of the discrete eigenvalue is zero and the imaginary part,η, varies linearly with respect to
the amplitudeA.

In [9], we use a variational approach for obtaining the discrete eigenvalues of the
Zakharov–Shabat scattering problem. For a particularly simple choice of test functions
(in fact the eigenfunctions corresponding to the eigenvalue zero) we obtain a straight-line
dependence between the eigenvalue and the amplitude,η = k(A − Ac), where the critical
amplitudeAc and the slopek are given by equations (8) and (9), respectively. For the
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potentialQ(x) = sech(x) we readily obtain

Ac =
1
2π(2n − 1)∫ ∞

−∞ sech(x) dx
=

1
2π(2n − 1)

π
= n − 1

2
(A1)

and

k =
∫ ∞
−∞ sech(x) dx∫ ∞

−∞ sin
[
(2n − 1)

∫ x

−∞ sech(x ′) dx ′] dx

= π∫ ∞
−∞ sin[(2n − 1)2 tan−1(ex)] dx

= π

π
= 1 . (A2)

In spite of the fact that the straight lineη = k(A − Ac) is obtained with an approximation
procedure assuming small eigenvalues, for this particular choice of potential the exact result
is valid for all amplitudes, i.e.η = A − (n − 1

2) is regained.
In the asymptotic analysis based on the Bohr–Sommerfeld equation, the single-humped

potential is expanded around its maximum. In the case ofQ(x) = sech(x), we obtain
Q ≈ (1 − x2/2).

The straight-line solution given below equation (6)(η ∼= A − (n − 1
2)

√
2b) then

immediately yields the exact result,η = A − (n − 1
2) valid for all amplitudes, in spite of

the fact that the analysis in this case is based on the assumption of large amplitudes.
Thus, for this particular potential, the straight lines describing the asymptotic variation

of the eigenvalue for small and large amplitudesA, respectively, coincide and are identical
to the exact result.
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